SMPS Temelleri 2

Daha önceki makalede, anahtarlama tekniği ile minimum kayıpla güç kontrolünü görmüştük. Oradaki devrede ideal bir MOSFET kullanmıştık, çünkü amacımız güç kontrolünü kavramsal olarak anlamaktı. Artık devreyi geliştirmeye devam ediyor olacağız ve gerçekte meydana gelen etkileri görmek için artık ideal MOSFET yerine gerçeğe daha yakın olan bir MOSFET modeli kullanacağız.

Buradaki ve daha önceki makalenin devrelerinin hem çizimi hem de simulasyonunda PowerSim firmasının PSIM yazılımını (sürüm 2021a) kullanıyorum. PSIM, güç elektroniği devrelerinin simulasyonunda kullanılan de fakto standart yazılımdır. Devrelerin konsept olarak davranışını incelemek için ideal komponentlerle çalışmaya da olanak veriyor, tasarımın ileriki aşamalarında gerçeğe daha yakın olan modellerle de çalışmaya olanak veriyor. Bu programın ücretsiz demo versiyonu bile öğrenme amaçlı birçok devre ile çalışma yapılmasına olanak veriyor. 99 Avroya satın alınabilen öğrenci versiyonu ise daha ileri seviyede özelliklerin kullanılmasına olanak veriyor. Güç elektroniği ile uğraşanların mutlaka bu programı incelemesi ve tasarımda sağladığı kolaylıkları anlaması gerekir.

PSIM'de MOSFET için ideal, level 1, level 2 gibi modellerin arasından seçim yapılabiliyor. Bizim buradaki amacımız için level 1 modeli yeterli olacaktır. Daha önceki güç kontrol devresini level 1 MOSFET ile tekrar kuralım ve dalga şekillerini görelim.

1621958272940.png

Bu devrede MOSFET gate'ini %50 duty cycle olan pozitif 10 V genlikli, 25 kHz lik bir kare dalga ile sürüyoruz. Ve beklendiği üzere, devrenin çıkışında 100 V besleme voltajını açıp kapatıyoruz. Amacımız sadece güç kontrolü olsaydı bu yapı işimizi görüyor olacaktı. Ama eğer bizim istediğimiz girişteki 100 V beslemeyi daha düşük bir değere indirmek ve stabil bir çıkış voltajı elde etmek ise, bu şekilde devre iş görmüyor. Örneğin çıkışta stabil 50 VDC elde etmek istiyoruz. Kare dalga duty cycle değerini azaltarak ORTALAMA 50 VDC elde edebiliriz, ama sabit 50 VDC elde edemiyoruz. Çıkış voltajı 100 V ve 0 V arasında gidip geliyor. Bu çıkış voltajında iki tane bileşen var:

1) Kare dalga voltajın ortalama değeri (bu DC bileşen)
2) Kare dalga şeklinin oluşmasına sebep olan harmonikler (bunlar da AC bileşenler)

1621958523880.png


Eğer bir şekilde bu harmonikleri uzaklaştırabilirsek, sadece 50 V luk DC bileşeni geride bırakabilir ve amacımıza ulaşmış oluruz. AC bileşenleri uzaklaştırmanın yolu bir low pass filtre kullanmaktır. Eğer RC low pass filtre kullanırsak, amacımıza ulaşırız, ama RC filtrenin direnci üzerinde kaybolacak olan güç, anahtarlama ile elde etmeye çalıştığımız verim artışını tamamen iptal edecektir, o yüzden RC filtre kullanamayız, onun yerine bir LC filtre kullanmamız gerekiyor. Aşağıda bu devreyi görüyoruz:

1621959192606.png


LC filtreden geçen kare dalga çıkış, artık çok az bir ripple değeri haric bir DC voltaja dönüşmüş durumda. 33 V gibi bir değer görüyoruz burada.

1621959274878.png


Ama bu devrede çok ciddi bir sorun var. MOSFET anahtar, peryodik olarak bobine giden akımı açıp kapatmaktadır. MOSFET ON olduğunda, bobinden geçen akım artıyor ve belli bir değere ulaşıyor. Ama sonrasında MOSFET OFF olmaya başladığında, bobin kendi içerisinden geçen akımın değişmesine karşı koyuyor ve bu esnada binlerce voltluk bir ters EMF meydana geliyor ve bizim MOSFET anında telef oluyor! Aşağıda MOSFET'in drain source arasındaki voltajı görüyoruz:

1621959765661.png


Tabi burada level 1 MOSFET modelinde MOSFET kapasitansları modellenmediği için 35 kV gibi biraz abartılı bir voltaj görüyoruz. Gerçek bir devrede bu voltaj MOSFET'in anahtarlama hızına bağlı olarak değişecektir ve gene de kilovoltlar mertebesinde olacaktır. MOSFET OFF olduğunda bobinden geçen akımın bir şekilde akmaya devam etmesine izin vermemiz lazım. Bunun için de LC filtrenin girişine bir diyot bağlıyoruz ve bu diyot, MOSFET OFF olduğu anda bobinden akmaya devam eden akımı kendi üzerine alıyor. Aşağıda diyodun ilave edildiği devreyi görüyoruz:

1621960069150.png


Bu devreyi çalıştırdığımız zaman, MOSFET OFF olurken üzerindeki maksimum voltaj değerinin kaynak voltajına eşit olduğunu görüyoruz. Burada aynı zamanda çıkıştaki ripple miktarının da azaldığını, ve çıkış voltajının da tam olarak duty cycle değerine göre şekillendiğini görüyoruz. Duty cycle %50 idi, giriş voltajı da 100 V, çıkışta temiz 50 VDC alıyoruz.

1621960137652.png


Buradaki deneyler neticesinde vardığımız devreye "buck converter" deniyor. Bu devre ile girişteki bir DC voltajın daha düşük bir voltaja dönüştürebiliyoruz ve bu dönüşümü son derece yüksek bir verimle yapıyoruz. Buradaki güç kaybı, sadece MOSFET ON direncinden, iletkenlerin kaçak dirençlerinden, ve bobinde nüve kullanıldıysa bu nüvenin histerezisinden kaynaklanıyor.

1621960278962.png


Bundan sonraki konuda, buck converter'de kullanılan komponentleri (bobin, kondansatör, diyot, MOSFET) nasıl seçiyoruz ona bakacağız.
 
Son düzenleme:
Evet aşama aşama gidelim. Ben de bir yandan işi öğreniyorum.
 
Hocam çok iyi anladım sağolun.Yalnızca diyotun ters alımı üzerine nasıl aldığını idrak edemedim.Onuda öğrenmez inşallah
 
smps i öğrenmeyi merakla istiyorum. özellikle 220V leri küçük çaplı devrelerle 5V civarına indirebilmek. Bu kısım hakkında anlatımlar yapabilir miyiz. (birazcık şey oldu ama k.bakmayın :) )
 
Bende dört gözle bekliyorum Timur hocamdan herhalde yoğun olmalı ki araya zaman girdi.Avını bekleyen bir timsah gibi bilgiyi bekliyorum.Tabi başka kaynaklardan da araştırılabilir ancak “Fen”i özümseyenden dinlemek bambaşka.
 
smps i öğrenmeyi merakla istiyorum. özellikle 220V leri küçük çaplı devrelerle 5V civarına indirebilmek. Bu kısım hakkında anlatımlar yapabilir miyiz. (birazcık şey oldu ama k.bakmayın :) )
Elde edilecek 5V insan temasindan tamamen izole bir yerde kullanilacaksa bu yontem ile elde edilebilir. Mesela isildagin icindeki akuyu sarj etmek icin kullanilabilir ama ornegin telefon sarji ya da TV'in USB girisi gibi bir yerde kullanilacak ise bu yontem secilmez. Bu yontemde yuksek gerilim cikistan izole degil. Devredeki herhangi bir arizada cikisa 220VAC ya da 310VDC gibi cok tehlikeli gerilimleri gecirme ihtimali var. Insan temasina acik olan devrelerde izole yapilar kullaniliyor. Once 220VAC'yi 310VDC'ye cevirip daha sonra yuksek frekansta transformatore veriyorlar. Transformatorun primer sekonder oranina gore de dusuk gerilim elde ediliyor. Eski tip adaptorlerde oldugu gibi. Ama tetikleme 50Hz ile degilde KHz seviyesinde oldugu icin transformatorler cok daha kucuk oluyor. Hem devre maliyeti ucuzluyor hem de daha hafif ve tasinabilir hale geliyor. Devrede ariza olussa bile yuksek gerilim cikisa ulasamiyor. Tabii degisen yuke gore cikisin stabil olmasi icin ornegin TL431 ve optokuplor gibi elemanlarla geribesleme yapilip cikisin sabit tutulmasi saglaniyor. Giris kati tamamen komure donse bile cikista kullaniciya zarar verecek gerilim kacaklari olusmuyor boylece.
 
Son düzenleme:
Basit bir devre çeması var mı ? 500mA çıkış gücüne sahip bir devre ? ve bulunabilir malzemelerle örneğin bu trafo ne trafosu olarak geçiyor ?
 
Basit bir devre çeması var mı ? 500mA çıkış gücüne sahip bir devre ? ve bulunabilir malzemelerle örneğin bu trafo ne trafosu olarak geçiyor ?
Ferit nuve alarak kendiniz sarabilirsiniz ama zor is. Primer katinda yuzlerce sarim olacak cok ince telden. Onun yerine hazir alabilirsiniz. Ama maliyeti hazir 5V adaptor almaktan pahaliya gelebilir. 5V USB cikisli sarj adaptorlerinin icinde gorulebiliecek minik trafolar. Siz 5V - 500mA istiyorsunuz. 3W'lik bir trafo isinizi gorecektir.




220VAC 5VDC 2A SMPS.jpg
 
Son düzenleme:
Daha önceki makalede, anahtarlama tekniği ile minimum kayıpla güç kontrolünü görmüştük. Oradaki devrede ideal bir MOSFET kullanmıştık, çünkü amacımız güç kontrolünü kavramsal olarak anlamaktı. Artık devreyi geliştirmeye devam ediyor olacağız ve gerçekte meydana gelen etkileri görmek için artık ideal MOSFET yerine gerçeğe daha yakın olan bir MOSFET modeli kullanacağız.

Buradaki ve daha önceki makalenin devrelerinin hem çizimi hem de simulasyonunda PowerSim firmasının PSIM yazılımını (sürüm 2021a) kullanıyorum. PSIM, güç elektroniği devrelerinin simulasyonunda kullanılan de fakto standart yazılımdır. Devrelerin konsept olarak davranışını incelemek için ideal komponentlerle çalışmaya da olanak veriyor, tasarımın ileriki aşamalarında gerçeğe daha yakın olan modellerle de çalışmaya olanak veriyor. Bu programın ücretsiz demo versiyonu bile öğrenme amaçlı birçok devre ile çalışma yapılmasına olanak veriyor. 99 Avroya satın alınabilen öğrenci versiyonu ise daha ileri seviyede özelliklerin kullanılmasına olanak veriyor. Güç elektroniği ile uğraşanların mutlaka bu programı incelemesi ve tasarımda sağladığı kolaylıkları anlaması gerekir.

PSIM'de MOSFET için ideal, level 1, level 2 gibi modellerin arasından seçim yapılabiliyor. Bizim buradaki amacımız için level 1 modeli yeterli olacaktır. Daha önceki güç kontrol devresini level 1 MOSFET ile tekrar kuralım ve dalga şekillerini görelim.

10695 eklentisine bak
Bu devrede MOSFET gate'ini %50 duty cycle olan pozitif 10 V genlikli, 25 kHz lik bir kare dalga ile sürüyoruz. Ve beklendiği üzere, devrenin çıkışında 100 V besleme voltajını açıp kapatıyoruz. Amacımız sadece güç kontrolü olsaydı bu yapı işimizi görüyor olacaktı. Ama eğer bizim istediğimiz girişteki 100 V beslemeyi daha düşük bir değere indirmek ve stabil bir çıkış voltajı elde etmek ise, bu şekilde devre iş görmüyor. Örneğin çıkışta stabil 50 VDC elde etmek istiyoruz. Kare dalga duty cycle değerini azaltarak ORTALAMA 50 VDC elde edebiliriz, ama sabit 50 VDC elde edemiyoruz. Çıkış voltajı 100 V ve 0 V arasında gidip geliyor. Bu çıkış voltajında iki tane bileşen var:

1) Kare dalga voltajın ortalama değeri (bu DC bileşen)
2) Kare dalga şeklinin oluşmasına sebep olan harmonikler (bunlar da AC bileşenler)

10696 eklentisine bak

Eğer bir şekilde bu harmonikleri uzaklaştırabilirsek, sadece 50 V luk DC bileşeni geride bırakabilir ve amacımıza ulaşmış oluruz. AC bileşenleri uzaklaştırmanın yolu bir low pass filtre kullanmaktır. Eğer RC low pass filtre kullanırsak, amacımıza ulaşırız, ama RC filtrenin direnci üzerinde kaybolacak olan güç, anahtarlama ile elde etmeye çalıştığımız verim artışını tamamen iptal edecektir, o yüzden RC filtre kullanamayız, onun yerine bir LC filtre kullanmamız gerekiyor. Aşağıda bu devreyi görüyoruz:

10697 eklentisine bak

LC filtreden geçen kare dalga çıkış, artık çok az bir ripple değeri haric bir DC voltaja dönüşmüş durumda. 33 V gibi bir değer görüyoruz burada.

10698 eklentisine bak

Ama bu devrede çok ciddi bir sorun var. MOSFET anahtar, peryodik olarak bobine giden akımı açıp kapatmaktadır. MOSFET ON olduğunda, bobinden geçen akım artıyor ve belli bir değere ulaşıyor. Ama sonrasında MOSFET OFF olmaya başladığında, bobin kendi içerisinden geçen akımın değişmesine karşı koyuyor ve bu esnada binlerce voltluk bir ters EMF meydana geliyor ve bizim MOSFET anında telef oluyor! Aşağıda MOSFET'in drain source arasındaki voltajı görüyoruz:

10699 eklentisine bak

Tabi burada level 1 MOSFET modelinde MOSFET kapasitansları modellenmediği için 35 kV gibi biraz abartılı bir voltaj görüyoruz. Gerçek bir devrede bu voltaj MOSFET'in anahtarlama hızına bağlı olarak değişecektir ve gene de kilovoltlar mertebesinde olacaktır. MOSFET OFF olduğunda bobinden geçen akımın bir şekilde akmaya devam etmesine izin vermemiz lazım. Bunun için de LC filtrenin girişine bir diyot bağlıyoruz ve bu diyot, MOSFET OFF olduğu anda bobinden akmaya devam eden akımı kendi üzerine alıyor. Aşağıda diyodun ilave edildiği devreyi görüyoruz:

10700 eklentisine bak

Bu devreyi çalıştırdığımız zaman, MOSFET OFF olurken üzerindeki maksimum voltaj değerinin kaynak voltajına eşit olduğunu görüyoruz. Burada aynı zamanda çıkıştaki ripple miktarının da azaldığını, ve çıkış voltajının da tam olarak duty cycle değerine göre şekillendiğini görüyoruz. Duty cycle %50 idi, giriş voltajı da 100 V, çıkışta temiz 50 VDC alıyoruz.

10701 eklentisine bak

Buradaki deneyler neticesinde vardığımız devreye "buck converter" deniyor. Bu devre ile girişteki bir DC voltajın daha düşük bir voltaja dönüştürebiliyoruz ve bu dönüşümü son derece yüksek bir verimle yapıyoruz. Buradaki güç kaybı, sadece MOSFET ON direncinden, iletkenlerin kaçak dirençlerinden, ve bobinde nüve kullanıldıysa bu nüvenin histerezisinden kaynaklanıyor.

10702 eklentisine bak

Bundan sonraki konuda, buck converter'de kullanılan komponentleri (bobin, kondansatör, diyot, MOSFET) nasıl seçiyoruz ona bakacağız.
Timur Bey devamını bekliyoruz. Üç dört bölümde işi hallederdiniz sanırım. :)
 

Forum istatistikleri

Konular
7,119
Mesajlar
121,226
Üyeler
2,885
Son üye
ozcanthegreat

Son kaynaklar

Son profil mesajları

az bilgili çok meraklı
Prooffy wrote on semih_s's profile.
Merhaba, sizden DSO2C10 hakkında bilgi rica ettim. Yanıtlarsanız sevinirim...
Unal wrote on taydin's profile.
Timur Bey, Arduino kontrollü bir akü şarj cihazı yapmaya çalışıyorum. Aklımdaki fikri basit bir çizim olarak konu açmıştım. Özellikle sizin fikirlerinizi çok önemsiyorum.
hakan8470 wrote on Dede's profile.
1717172721760.png
Dedecim bu gul mu karanfil mi? Gerci ne farkeder onu da anlamam. Gerci bunun anlamini da bilmem :gulus2:
Lyewor_ wrote on hakan8470's profile.
Takip edilmeye başlanmışım :D ❤️
Back
Top